Strony

niedziela, 21 lutego 2021

 Problem:list of elements, one is unique, others always in pairs, find unique



 

def unique(arr):
""" find unique element in array
1. only one is unique
2. all the others are in pairs
>>> unique([1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1])
6
A XOR A = 0
0 XOR A = A
"""
x = 0
for i in arr:
x ^= i
return x
view raw unique hosted with ❤ by GitHub

 Handy itertools:


  • powerset
    import itertols as it
    def powerset(iterable):
    """
    powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)
    """
    s = list(iterable)
    return it.chain.from_iterable(it.combinations(s, r) for r in range(len(s)+1))
    view raw powerset hosted with ❤ by GitHub
  • all sublist from list
    def sublists(iterable):
    """ generate all of the sublist from *iterable*.
    >>> [s for s in sublists('hi')]
    [('h',), ('i',), ('h', 'i')]
    >>> list(sublists([0, 1, 2]))
    [(0,), (1,), (2,), (0, 1), (1, 2), (0, 1, 2)]
    """
    # The length-1 sublist
    seq = []
    for item in iter(iterable):
    seq.append(item)
    yield (item,)
    seq = tuple(seq)
    item_count = len(seq)
    # And the rest
    for n in range(2, item_count + 1):
    for i in range(item_count - n + 1):
    yield seq[i : i + n]
    view raw sublists hosted with ❤ by GitHub

środa, 19 czerwca 2013

naive graph coloring

  Coloring nodes of a graph, simple and naive approach:

#!/usr/bin/env python
import random
import sys
class node( object ):
""" a vertex
"""
def __init__( self, key ):
""" c'tor """
self.key = key
self.c = None
self.outEdges = []
self.inEdges = []
def connect( self, other ):
""" connect this verted to the other one """
if self not in other.inEdges and other not in self.outEdges:
other.inEdges.append( self )
self.outEdges.append( other )
class graph( object ):
""" simple graph """
nodes = []
def __init__( self ):
""" c'tor """
self.nodes = []
self.chroma = 1
self.palette = []
def __contains__( self, node ):
""" in operator """
return node in self.nodes
def add( self, n ):
""" add vertex """
if n not in self.nodes:
self.nodes.append( n )
def colors( self ):
""" create random palette """
while len(self.palette) < self.chroma:
newcol = "#%s" % hex( random.randint(0, 256*256*256 ) )[2:].zfill(6)
if newcol not in self.palette:
self.palette.append( newcol )
def dot( self, fname ):
""" create dot file """
self.colors()
if not fname.endswith(".dot"):
fname = "%s.dot" % fname
fname = open( fname, "w+" )
fname.write( "digraph G {\n")
for node in self.nodes:
fname.write( "%s [color=\"%s\",bgcolor=\"%s\",label=\"%s\",shape=\"circle\",style=\"filled\"];\n" % ( node.key,
self.palette[node.c-1],
self.palette[node.c-1],
node.key ) )
for node in self.nodes:
for c in node.outEdges:
fname.write( "%s -> %s;\n" % ( node.key, c.key ) )
fname.write( "}\n" )
fname.close()
def color( gr ):
""" colorize graph """
for n in gr.nodes:
n.c = None
def colorize( n, col ):
""" can use color c for vertex n? """
for item in n.inEdges + n.outEdges:
if item.c == col:
return False
return col
# # sort by number of in and out edges
nodes = sorted( [ (len(n.outEdges + n.inEdges), n) for n in gr.nodes ], reverse = True )
colors = [ 1 ]
for i, n in nodes:
if not n.c:
while not n.c:
for c in colors:
can = colorize( n, c )
if can:
n.c = can
break
if not n.c:
colors.append( colors[-1] +1 )
n.c = colors[-1]
## set chromatic number
gr.chroma = len(colors)
return colors
## execution
if __name__ == "__main__":
if len(sys.argv) != 4:
print "usage: color.py nbNodes nbEdges dotFile"
sys.exit(0)
nodes, edges, fname = int(sys.argv[1]), int(sys.argv[2]), sys.argv[3]
gr = graph()
nodes = [ node(i) for i in range(nodes) ]
for i in range(edges):
inode = random.choice( nodes )
jnode = random.choice( nodes )
inode.connect( jnode )
for node in nodes:
gr.add(node)
c = color(gr)
gr.dot( fname )
view raw color.py hosted with ❤ by GitHub

Usage is very simple:
 
python color.py  nbNodes nbEdges dotFileName

and then use dot, neato or twopi for rendering.

Example gallery is here.

środa, 12 czerwca 2013

don't pay taxes for CO2 emission, just plant more red black trees

Just for fun and making plots like that [small rbtrees gallery].

And here goes the humble code...

class Node( object ):
"""
.. class:: Node
rbTree Node
"""
def __init__( self, key ):
""" c'tor """
self.left = None
self.right = None
self.red = False
self.key = key
self._parent = None
@property
def parent(self):
return self._parent
@parent.setter
def parent( self, parent ):
self._parent = parent
def grandpa( self ):
""" grandparent """
if self.parent:
return self.parent.parent
def uncle( self ):
""" uncle """
grandpa = self.grandpa()
if not grandpa:
return None
if self.parent == grandpa.left:
return grandpa.right
return grandpa.left
class rbTree( object ):
"""
.. class:: rbTree
as seen in T. Cormen, C. Leiseron, R. Rivest, C. Stein
"""
def __init__( self ):
""" c'tor """
# # dummy node
self._null = Node(None)
self._null.left = self._null
self._null.right = self._null
self._null.parent = self._null
# # initial tree root
self.root = self._null
def insert( self, key ):
""" insert key :key: into the tree """
y = self._null
x = self.root
while x != self._null:
y = x
if key <= x.key:
x = x.left
else:
x = x.right
node = Node( key )
node.parent, node.left, node.right, node.red = y, self._null, self._null, True
if y == self._null:
self.root = node
elif node.key <= y.key:
y.left = node
else:
y.right = node
self._fixIns( node )
def min( self, node = None ):
""" find min from a given node """
node = node if node else self.root
while node.left.key:
node = node.left
return node.key
def max( self, node = None ):
""" find max from a given node """
node = node if node else self.root
while node.right.key:
node = node.right
return node.key
def _fixIns( self, node ):
""" fixtures after insertion """
while node.parent.red:
if node.parent == node.parent.parent.left:
if node.parent.parent.right.red:
node.parent.red = False
node.parent.parent.right.red = False
node.parent.parent.red = True
node = node.parent.parent
else:
if node == node.parent.right:
node = node.parent
self.rol(node)
node.parent.red = False
node.parent.parent.red = True
self.ror( node.parent.parent )
else:
if node.parent.parent.left.red:
node.parent.red = False
node.parent.parent.left.red = False
node.parent.parent.red = True
node = node.parent.parent
else:
if node == node.parent.left:
node = node.parent
self.ror(node)
node.parent.red = False
node.parent.parent.red = True
self.rol( node.parent.parent )
self.root.red = False
def rol( self, x ):
""" rotate left """
if not x.key: return
y = x.right
x.right = y.left
if y.left != self._null:
y.left.parent = x
y.parent = x.parent
if x.parent == self._null:
self.root = y
elif x == x.parent.left:
x.parent.left = y
else:
x.parent.right = y
y.left = x
x.parent = y
def ror( self, y ):
""" rotate right """
if not y.key: return
x = y.left
y.left = x.right
if x.right != self._null:
x.right.parent = y
x.parent = y.parent
if y.parent == self._null:
self.root = x
elif y == y.parent.right:
y.parent.right = x
else:
y.parent.left = x
x.right = y
y.parent = x
def transplant( self, u, v ):
""" transplant subtrees
plant v in place of u
"""
if u.parent == self._null:
self.root = v
elif u == u.parent.left:
u.parent.left = v
else:
u.parent.right = v
v.parent = u.parent
def find( self, k ):
""" find for a key k """
node = self.root
while node != self._null and node.key != k:
if k < node.key:
node = node.left
else:
node = node.right
return node
def delete( self, z ):
""" delete Node z """
y = z
zcol = y.red
if z.left == self._null:
x = z.right
self.transplant( z, z.right )
elif z.right == self._null:
x = z.left
self.transplant( z, z.left )
elif y == self.min( z.right ):
zcol = y.red
x = y.right
if y.parent == z:
x.parent = y
else:
self.transplant( y, y.right )
y.right = z.right
y.right.parent = y
self.transplant( z, y )
y.left = z.left
y.left.parent = y
y.red = z.red
if not zcol:
self._fixDel( x )
def _fixDel( self, x ):
""" fixtures after deletion """
while x != self.root and x.red:
if x == x.parent.left:
w = x.parent.right
if w.red:
w.red = False
x.parent.red = True
self.rol( x.parent )
w = x.parent.right
if not w.left.red and not w.right.red:
w.red = True
x = x.parent
else:
if not w.right.red:
w.left.red = False
w.red = True
self.ror(w)
w = x.parent.right
w.red = x.parent.red
x.parent.red = False
w.right.red = False
self.rol( x.parent )
x = self.root
else:
w = x.parent.left
if w.red:
w.red = False
x.parent.red = True
self.ror( x.parent )
w = x.parent.left
if not w.left.red and not w.right.red:
w.red = True
x = x.parent
else:
if not w.left.red:
w.right.red = False
w.red = True
self.rol(w)
w = x.parent.left
w.red = x.parent.red
x.parent.red = False
w.left.red = False
self.ror( x.parent )
x = self.root
def dfs( self, node = None ):
""" dummy inorder dfs to check """
node = node if node else self.root
if node.left.key:
self.dfs( node.left )
print node.key,
if node.right.key:
self.dfs( node.right )
def dot( self, fname ):
""" dummy dot file creation
to generate pic run:
neato -T png fname > fname.png
or
dot -T png fname > fname.png
"""
f = open( fname, "w+" )
f.write( "digraph rb {\n")
def nodeId( node ):
return "node%s" % id(node)
def nodeCol( node ):
return "red" if node.red else "black"
def visit( node, f ):
f.write( '%s [label="%s",color="%s",shape="circle"];\n' % ( nodeId(node), node.key, nodeCol(node) ) )
if node.left.key:
visit( node.left, f )
f.write( "%s -> %s;\n" % ( nodeId(node), nodeId(node.left) ) )
if node.right.key:
visit( node.right, f )
f.write( "%s -> %s;\n" % ( nodeId(node), nodeId(node.right) ) )
visit( self.root, f )
f.write( "}\n" )
f.close()
# # just for fun make some dot
if __name__ == "__main__":
t = rbTree()
x = range(500)
import random
random.shuffle( x )
for i in x:
t.insert( i )
t.dot( "rb500.dot")
view raw rbTree.py hosted with ❤ by GitHub



:)

środa, 5 czerwca 2013

python popcnt

popcnt - count bits set ("1") in a integer, of course using python

I've implemented only four ways to do this:
  • using look up table 0..255 (no iterations, oen sum and a few shifting by 8 bits)
  • naive (number of iterations ==  number of bits)
  • Brian Kernighan way (number of iterations == number of bits set)
  • pythonic by ugly (count "1"s after calling bin()...)
#!/bin/env python
""" :mod: popcnt
============
.. module: popcnt
:synopsis: couting bits set ("1") in int or long
.. moduleauthor:: Krzysztof.Ciba@NOSPAMgmail.com
"""
## bit count look up table in range 0..255
__bcLUT = [ 0 ] * 256
for i in range(256):
__bcLUT[i] = ( i & 1 ) + __bcLUT[i/2]
def popcntLUT( arg ):
""" popcnt using look up table """
assert type(arg) in ( int, long )
e = lambda x, y: x + int( bool( y ) ) << 3
return sum( [ __bcLUT[ ( arg >> i ) & 255 ]
for i in range( 0, e( *divmod( arg.bit_length(), 8) ), 8 ) ] )
def popcntBK( arg ):
""" Brian Kernighan way - loop only for bits set """
assert type(arg) in ( int, long )
pop = 0
while arg:
arg &= arg - 1
pop += 1
return pop
def popcntNaive( arg ):
""" naive - loop for every bit in arg """
assert type(arg) in ( int, long )
pop = 0
while arg:
pop += arg & 1
arg >>= 1
return pop
def popcntUgly( arg ):
""" ugly but pythonic way? """
assert type(arg) in ( int, long )
return bin(arg).count("1")
# # eep!
if __name__ == "__main__":
# dummy testing
for i in range(1024):
ugly = popcntUgly(i)
lut = popcntLUT(i)
bk = popcntBK(i)
naive = popcntNaive(i)
assert ugly == lut
assert ugly == bk
assert ugly == naive
view raw popcnt.py hosted with ❤ by GitHub


All function were run on 1000 samples made by 100 random numbers:

# --- testBK.py
import sys
import random
from popcnt import popcntBK
up = 2**256
for i in range(1, 1001):
if not i % 10:
print ".",
sys.stdout.flush()
if not i % 100:
print
sys.stdout.flush()
for j in range(1000):
popcntBK( random.randint( 0, up ) )
# --- testLUT.py
import sys
import random
from popcnt import popcntLUT
up = 2**256
for i in range(1, 1001):
if not i % 10:
print ".",
sys.stdout.flush()
if not i % 100:
print
sys.stdout.flush()
for j in range(1000):
popcntLUT( random.randint( 0, up ) )
# --- testNaive.py
import sys
import random
from popcnt import popcntNaive
up = 2**256
for i in range(1, 1001):
if not i % 10:
print ".",
sys.stdout.flush()
if not i % 100:
print
sys.stdout.flush()
for j in range(1000):
popcntNaive( random.randint( 0, up ) )
# --- testUgly.py
import sys
import random
from popcnt import popcntUgly
up = 2**256
for i in range(1, 1001):
if not i % 10:
print ".",
sys.stdout.flush()
if not i % 100:
print
sys.stdout.flush()
for j in range(1000):
popcntUgly( random.randint( 0, up ) )
view raw gistfile1.py hosted with ❤ by GitHub


And now testing results:
  • naive (Zzzzz...)
[Wed, 05 Jun 22:07 E0][cibak@localhost:~/popcnt]> time python testNaive.py
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
175.885u 0.055s 2:56.35 99.7%    0+0k 0+0io 0pf+0w

  • BK way (much better!)
[Wed, 05 Jun 22:04 E0][cibak@localhost:~/popcnt]> time python testBK.py
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
75.853u 0.028s 1:16.03 99.7%    0+0k 0+0io 0pf+0w
 

  • look up table (niiiice!)
[Wed, 05 Jun 22:06 E0][cibak@localhost:~/popcnt]> time python testLUT.py
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
42.828u 0.030s 0:42.93 99.8%    0+0k 0+0io 0pf+0w 

  • ugly but pythonic (wut?)
[Wed, 05 Jun 22:04 E1][cibak@localhost:~/popcnt]> time python testUgly.py
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
40.880u 0.040s 0:41.06 99.6%    0+0k 0+0io 0pf+0w



And guess what? Ugly (but pythonic) won! Coincidence? I don't think so... ;)

EDIT:
And of course I can completely remove lines with lambda and all this stuff within popcntLUT  and it could be coded just like that:

## bit count look up table in range 0..255
__bcLUT = [ 0 ] * 256
for i in range(256):
__bcLUT[i] = ( i & 1 ) + __bcLUT[i/2]
def popcntLUT( arg ):
""" popcnt using look up table """
assert type(arg) in ( int, long )
return sum( [ __bcLUT[ ( arg >> i ) & 255 ]
for i in range( 0, arg.bit_length(), 8 ) ] )
view raw popcntLUT.py hosted with ❤ by GitHub


But it doesn't help to much.

Also one can check say 16 bits look up table, say:

__bc16b = [ 0 ] * (256*256)
for i in range(256*256):
__bc16b[i] = ( i & 1 ) + __bc16b[i/2]
def popcnt16b( arg ):
""" popcnt using 16bits loom up table """
return sum( [ __bc16b[( arg >> i ) & 65535 ] for i in range( 0, arg.bit_length(), 16 ) ] )
view raw popcnt16b.py hosted with ❤ by GitHub


 This should run at least 2 times faster that original popcntLUT.

 

środa, 17 kwietnia 2013

one does not simply pickle a tree

Ahrrr... It took me 5 hours to figure it out.

Python multiprocessing.Queue is using internally shelve module, which again internally is using cPickle for speed up.  But if something cannot be pickled, when calling Queue.put, you will see some cryptic error message:


File "/opt/dirac/pro/Linux_x86_64_glibc-2.5/lib/python2.6/multiprocessing/queues.py", line 242, in _feed
-    send(obj)
TypeError: expected string or Unicode object, NoneType found

Ugh! Not helping at all, but what to do except start debugging? Taking the advantage of the opportunity I had fixed also some problems here and there (un-shelvable locks or instance methods in several classes), but at the very, very end  I've got this:

pickle.PicklingError: Can't pickle : it's not found as __main__.copyelement

 Huh? What the heck? Where is this one? Find and grep fellows stayed completely  muted, so I've started to dump symbols from *.so under PYTHONPATH, and guess what? I HAVE FOUND IT!

[volhcb13] /opt/dirac/pro > nm Linux_x86_64_glibc-2.5/lib/python2.6/lib-dynload/_elementtree.so | grep copyelement
0000000000209dd8 b elementtree_copyelement_obj




This little bastard was hiding in cElementTree! I've swapped this one with its  python twin (ElementTree). Taa-daam!  Queue.put is working again, not a big deal for me,  XML fragments I'm dealing with are rather small.

5 hours! Five! FIVE HOURS lost...

So, dear children, please remember: when going multiprocessing forget about cElementTree (and perhaps several other modules rewritten in C for speed up) and use pure python implementations.

poniedziałek, 25 marca 2013

nth permutation in a lexicographical order


Problem:

Somebody is generating permutations of a given list of elements in a lexicographical order. What is the value of say nth permutation?

Brute force solution is to generate them all, but in that case you'll spend quite a lot of time generating useless permutations - O(n!). So here is the easy way:

#!/bin/env python
"""
Solves a problem of getting permutation of a given index,
while you know that permutations are created in a lexicographical order.
As input you are specifying a list of elements and index of permutation you want to get.
"""
## imports
from math import factorial
## this one just for checking
from itertools import permutations
def getNthPermutation( pIndex, inList, outList=[] ):
""" get :pIndex: permutation of :inList:
:warn: permutations are sorted in lexicographical order starting from 0, i.e.:
0 -> [1, 2, 3], 1 -> [1, 3, 2] and so on
:param int pIndex: given permutation index
:param list inList: initial list of elements
:param list outList: result list
"""
## permutation index too big
if pIndex >= factorial( len(inList) ): return []
## no more elements to use
if not inList: return outList
## make sure eList is sorted
inList.sort()
## get factorial
f = factorial( len(inList)-1 )
index = pIndex / f
reminder = pIndex % f
## add new element to outList
outList.append( inList[index] )
## ...and remove it from inList
del inList[index]
## bail out or call recursively depending of the reminder
if not reminder:
return outList + inList
else:
return getNthPermutation( reminder, inList, outList )
### test execution
if __name__ == "__main__":
ps = permutations( [1,2,3,4,5,6] )
for i in range(factorial(6)):
resList = []
res = getNthPermutation( i, [1,2,3,4,5,6], resList )
check = list( ps.next() )
assert( res == check )
view raw perm.py hosted with ❤ by GitHub